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Abstract

This assignment explores the concept of regular conditional probability, focusing on its ex-
istence and uniqueness. However, the proofs for existence and uniqueness were not provided in
[Röc16]. As a result, rigorously establishing these proofs became the central focus of the assign-
ment.
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1 Foreword
During last semester’s study of Probability Theory (bilingual course), students at the Qiushi College
were learning Probability Theory using the textbook [李贤平 97] . This textbook does not introduce
probability theory through the language of measure theory, nor does it cover the concept of conditional
expectation. However, during a proof in Mathematical Statistics in the second week of this semester,
conditional expectation appeared in the textbook [韦来生 15] as an integral of conditional probability.
This led me to hypothesize that the concept of conditional expectation mentioned in the textbook
[韦来生 15] must be the same as what we studied last semester [Röc16]. After discussions with
classmates, we failed to reach a satisfactory conclusion. It was not until the fourth week, during
the Selected Topics in Probability, that the concept of regular conditional probability was briefly
introduced. Unfortunately, [Röc16] claimed that this topic had little relevance to the subsequent
course content and thus avoided further discussion. Consequently, I decided to explore this topic as
the focus of my final assignment.

2 Regular Conditional Probability
In our in-class discussion, we observed that conditional probability

P [A | A0] := E[IA | A0]

∗Last modified on 2025-07-02.
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satisfies
0 ≤ P [A | A0] ≤ 1

P [∅ | A0] = 0; P [Ω | A0] = 1

for An, n ∈ N, pairwise disjoint

P [

∞∪
n=1

An | A0] =

∞∑
n=1

P [An | A0]

almost surely.
However, the null exceptional set depends on all of measurable set A, and there exists no universal

null set that makes the conditional probability be a probability measure. This motivates us to explore
a more refined approach to characterize P [A | A0] in a stronger sense.

Definition 1 (Probability Kernel). Let (Ω,A) and (Ω′,A′) be a pair of measurable spaces. A function
K : Ω×A′ → [0, 1] satisfy:

• ω → K(ω,A′) is an A-measurable map for all A′ ∈ A′;

• A′ → K(ω,A′) is a probability measure on (Ω′,A′) for all ω ∈ Ω.

Then we call it Probability Kernel.

To obtain the desired “conditional probability”, we need to work within a better-behaved space,
where such constructions can be rigorously defined.

Definition 2 (Standard Borel Space). A measurable space (Ω,A) is called standard Borel space,
if there exists a complete metric d on Ω, such that (Ω, d) is separable and the Borel σ-algebra A is
generated by the topology on (Ω, d).

Proposition 1 (Regular Conditional Probability). cf.[Röc16, Proposition 5.4.3]
Let (Ω,A) be a standard Borel space, P a probability measure on (Ω,A). Then for each σ-algebra

A0 ⊆ A, there exists a probability kernel KA0 from (Ω,A0) to (Ω,A), such that for all A ∈ A, it
holds that:

KA0
(ω,A) = P [A | A0](ω) for all P -a.s. ω ∈ Ω.

where the exceptional set might depend on A.
If K̃A0

is another probability kernel from (Ω,A0) to (Ω,A) with the same property, then there
exists a P -zero set N ∈ A, such that for every ω ∈ Ω \N and every A ∈ A, it holds that:

KA0(ω,A) = K̃A0(ω,A) for all A ∈ A.

The probability KA0
(ω,A) is called regular conditional probability given by A0.

3 The Existence of Regular Conditional Probability
Before proceeding with the proof, we first state and prove some lemmas and theorems that will be
essential for the following arguments.

Lemma 1 (Doob-Dynkin lemma). Let (Ω,A, P ) be a probability space, and let X : Ω → S be a
measurable function into a measurable space (S,S). If f : Ω → R is σ(X)-measurable, then there
exists a measurable function g : S → R such that f = g ◦X almost surely.

Proof of Lemma 1. Let f : Ω → R be σ(X)-measurable, where X : Ω → S is measurable.
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Step 1: Structure of σ(X)

The σ-algebra σ(X) generated by X is defined as:

σ(X) = {X−1(B) : B ∈ S}.

Since f is σ(X)-measurable, for every Borel set B ⊆ R, we have:

f−1(B) ∈ σ(X).

Thus, there exists a set AB ∈ S such that:

f−1(B) = X−1(AB).

This defines a mapping B 7→ AB from Borel sets in R to S. To ensure consistency, this mapping must
preserve set operations (e.g., unions, intersections, complements), which follows from the fact that
f−1 and X−1 are both σ-homomorphisms.

Step 2: Constructing g via rational intervals

We construct g : S → R as follows. For each rational r ∈ Q, define:

Ar = A(−∞,r] ∈ S,

where A(−∞,r] corresponds to the set in S such that f−1((−∞, r]) = X−1(Ar).
For s ∈ S, define:

g(s) = inf{r ∈ Q : s ∈ Ar}.
This infimum is well-defined because:

• For any s ∈ S, since f(ω) ∈ R for all ω, there exists some r ∈ Q such that f(ω) ≤ r, hence
X(ω) ∈ Ar.

• The set {r ∈ Q : s ∈ Ar} is bounded below (by, say, −∞).

Step 3: Verifying f = g ◦X almost surely

Let ω ∈ Ω. We claim that f(ω) = g(X(ω)) except on a P -null set.

• For f(ω) ≤ r with r ∈ Q:

– If f(ω) ≤ r, then ω ∈ f−1((−∞, r]) = X−1(Ar), so X(ω) ∈ Ar, implying g(X(ω)) ≤ r.
– Conversely, if X(ω) ∈ Ar, then g(X(ω)) ≤ r, so f(ω) ≤ r.

• For f(ω) ≥ r with r ∈ Q:

– If f(ω) > r, then ω /∈ f−1((−∞, r]) = X−1(Ar), so X(ω) /∈ Ar, implying g(X(ω)) > r.

Thus, g(X(ω)) ≤ f(ω) and g(X(ω)) ≥ f(ω) hold for all ω outside a null set where f(ω) may
not equal g(X(ω)). However, since f and g ◦ X are measurable, the set {ω : f(ω) 6= g(X(ω))} is
measurable and has measure zero.

Step 4: Measurability of g

To show g is S-measurable, we verify that for any a ∈ R, the set {s ∈ S : g(s) ≤ a} belongs to S.

• For rational a:
{s ∈ S : g(s) ≤ a} =

∩
r∈Q
r<a

Ac
r ∪Aa.

This follows from the definition of g as an infimum over rationals.

• For general a ∈ R: Approximate a by a decreasing sequence of rationals {rn}. Then:

{s ∈ S : g(s) ≤ a} =

∞∩
n=1

Arn .

Since each Arn ∈ S, the countable intersection is also in S.

Hence, g is S-measurable.
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Step 5: Uniqueness up to null sets

If g′ is another measurable function satisfying f = g′ ◦ X almost surely, then g(X(ω)) = g′(X(ω))
for P -almost every ω. Since X is measurable, the pushforward measure PX = P ◦X−1 ensures that
g = g′ almost surely with respect to PX .

We have constructed a measurable function g : S → R such that f = g◦X almost surely, completing
the proof.

Remark. The Doob-Dynkin lemma establishes that any σ(X)-measurable function f can be ex-
pressed as f = g ◦ X for some measurable g. In the context of regular conditional probabilities, it
ensures that the conditional expectation E[1A | A0], being A0-measurable, can be represented as a
function of a generating random variable η (e.g., η(ω) = ω). This allows the construction of the kernel
KA0

(ω,A) as a measurable function of ω, satisfying the required properties.

Theorem 1 (Carathéodory extension theorem). Let C be an algebra of subsets of a set Ω, and let
µ0 : C → [0,∞] be a countably additive pre-measure. Then there exists a measure µ on the σ-algebra
A = σ(C) such that µ|C = µ0. Moreover, this extension is unique if µ0 is σ-finite.

Proof of Theorem 1. Let C be an algebra of subsets of Ω, and µ0 : C → [0,∞] a countably additive
pre-measure.

Step 1: Outer measure construction

Define the outer measure µ∗ on all subsets E ⊆ Ω by

µ∗(E) = inf
{ ∞∑

n=1

µ0(Cn) : E ⊆
∞∪

n=1

Cn, Cn ∈ C

}
.

We verify that µ∗ is an outer measure:

• Monotonicity: If A ⊆ B, then any cover of B is also a cover of A, so µ∗(A) ≤ µ∗(B).

• Countable subadditivity: For any sequence {An}, we construct covers {Cn,k}∞k=1 of An with∑∞
k=1 µ0(Cn,k) ≤ µ∗(An) + ϵ/2n. The union

∪
n,k Cn,k covers

∪
n An, and

∑
n,k µ0(Cn,k) ≤∑

n µ
∗(An) + ϵ. Letting ϵ → 0 gives µ∗(

∪
n An) ≤

∑
n µ

∗(An).

• Empty set: µ∗(∅) = 0 since ∅ ⊆ ∅ and µ0(∅) = 0.

Step 2: Carathéodory measurability

A set A ⊆ Ω is called µ∗-measurable if for all E ⊆ Ω,

µ∗(E) = µ∗(E ∩A) + µ∗(E \A).

Let A be the collection of all µ∗-measurable sets. We show A is a σ-algebra:

• Closed under complements: If A ∈ A, then Ac satisfies the same condition by symmetry.

• Closed under countable unions: First, prove closure under finite unions by induction. For
countable unions

∪∞
n=1 An, use induction to show finite unions

∪N
n=1 An ∈ A, then apply the

definition of µ∗-measurability to approximate
∪∞

n=1 An by finite unions and take N → ∞.

Step 3: Restriction to A is a measure

The restriction µ = µ∗|A is a measure. To verify countable additivity:

• Let {An} ⊆ A be pairwise disjoint. By countable subadditivity, µ∗(
∪

n An) ≤
∑

n µ
∗(An).

• For the reverse inequality, fix N ∈ N and apply the Carathéodory condition iteratively to
E =

∪N
n=1 An and AN+1, showing µ∗(

∪N+1
n=1 An) =

∑N+1
n=1 µ∗(An). Taking N → ∞ and using

monotonicity gives µ∗(
∪

n An) ≥
∑

n µ
∗(An).
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Step 4: Extension property

For C ∈ C, we prove C is µ∗-measurable and µ∗(C) = µ0(C):

• Measurability: For any E ⊆ Ω, let {Cn} be a cover of E. Then Cn ∩ C and Cn \ C belong
to C (since C is an algebra), and µ0(Cn) = µ0(Cn ∩ C) + µ0(Cn \ C). Summing over n gives∑

n µ0(Cn) ≥ µ∗(E ∩ C) + µ∗(E \ C). Taking infima over covers yields µ∗(E) ≥ µ∗(E ∩ C) +
µ∗(E \ C).

• Equality: By definition, µ∗(C) ≤ µ0(C). For the reverse inequality, suppose C ⊆
∪

n Cn. Then
µ0(C) ≤

∑
n µ0(Cn ∩ C) (by countable subadditivity of µ0) ≤

∑
n µ0(Cn). Taking infima gives

µ∗(C) ≥ µ0(C).

Step 5: Uniqueness

If µ0 is σ-finite, the extension is unique. Let ν be another measure on A with ν|C = µ0:

• Apply the π-λ theorem:
C is a π-system (closed under finite intersections).

– The set {A ∈ A : µ(A) = ν(A)} is a λ-system.
– Since µ and ν agree on C, they agree on σ(C).

• σ-finiteness: Write Ω =
∪

n Ωn with µ0(Ωn) < ∞. For each A ∈ A, µ(A∩Ωn) = ν(A∩Ωn), so
µ(A) = limn→∞ µ(A ∩ Ωn) = ν(A).

Remark. The Carathéodory extension theorem ensures that a pre-measure defined on an algebra
can be uniquely extended to a measure on the generated σ-algebra, provided the pre-measure is σ-
finite. In the proof of the existence of regular conditional probabilities, it guarantees that the finitely
additive map fA(ω) = E[1A | A0](ω), defined on a countable generator C, extends uniquely to a
probability measure KA0

(ω, ·) on A. This step is critical for constructing the regular conditional
probability kernel rigorously.

Theorem 2. [KK02, Theorem 6.3]
For any Borel space S and measurable space T , let ξ and η be random elements in S and T ,

respectively. Then there exists a probability kernel µ from T to S satisfying

P[ξ ∈ · | η] = µ(η, ·) a.e. L(η),

and µ is unique a.e. L(η).

Proof of Theorem 2. We may assume that S ∈ B(R). For every r ∈ Q we may choose some measurable
function fr = f(·, r) : T → [0, 1] such that

f(η, r) = P[ξ ≤ r | η] a.e., r ∈ Q. (1)

Let A be the set of all t ∈ T such that f(t, r) is nondecreasing in r ∈ Q with limits 1 and 0 at ±∞.
Since A is specified by countably many measurable conditions, each of which holds a.e. at η, we have
A ∈ T and η ∈ A a.e. Now define

F (t, x) = 1A(t) inf
r>x

f(t, r) + 1Ac(t)1{x ≥ 0}, x ∈ R, t ∈ T,

and note that F (t, ·) is a distribution function on R for every t ∈ T . Hence, by Proposition~?? there
exist some probability measures m(t, ·) on R with

m(t, (−∞, x]) = F (t, x), x ∈ R, t ∈ T.

The function F (t, x) is clearly measurable in t for each x, and by a monotone class argument it follows
that m is a kernel from T to R.

5



By Equation 1 and the monotone convergence property of Eη, we have

m(η, (−∞, x]) = F (η, x) = P[ξ ≤ x | η] a.e., x ∈ R.

Using a monotone class argument based on the a.e. monotone convergence property, we may extend
the last relation to

m(η,B) = P[ξ ∈ B | η] a.e., B ∈ B(R). (2)
In particular, we get m(η, Sc) = 0 a.e., and so Equation 2 remains true on S = B ∩ S with m

replaced by the kernel

µ(t, ·) = m(t, ·)1{m(t, S) = 1}+ δs1{m(t, S) < 1}, t ∈ T,

where s ∈ S is arbitrary. If µ′ is another kernel with the stated property, then

µ(η, (−∞, r]) = P[ξ ≤ r | η] = µ′(η, (−∞, r]) a.e., r ∈ Q,

and a monotone class argument yields µ(η, ·) = µ′(η, ·) a.e.

Proof of Existence of Regular Conditional Probability. Let (Ω,A) be a standard Borel space and P a
probability measure on (Ω,A). Let A0 ⊆ A be a sub-σ-algebra.

Step 1: Countable Generator and Conditional Expectation

Since (Ω,A) is standard Borel, there exists a Polish topology on Ω such that A is the Borel σ-algebra.
Standard Borel spaces have the property that every probability measure admits a regular conditional
probability with respect to any sub-σ-algebra.

Let C be a countable π-system generating A. For each A ∈ C, the conditional expectation E[1A |
A0] exists as an A0-measurable function, unique up to P -null sets (by the definition of conditional
expectation). By the Doob-Dynkin lemma (see Lemma 1), for each A ∈ C, there exists a measurable
function fA : Ω → [0, 1] such that:

E[1A | A0] = fA ◦ η a.e. P,

where η is a measurable function generating A0 (e.g., η(ω) = ω).

Step 2: Construction of the Kernel via Extension

For fixed ω ∈ Ω, define fA(ω) for A ∈ C. The map A 7→ fA(ω) is:

• Finitely additive: For disjoint A1, A2 ∈ C, fA1∪A2
(ω) = fA1

(ω) + fA2
(ω).

• Non-negative: fA(ω) ≥ 0.

• Normalized: fΩ(ω) = 1.

To extend fA(ω) to a probability measure on (Ω,A), we apply the Carathéodory extension theorem
(see Theorem 1). However, since C is a π-system, the extension is unique if fA(ω) is countably additive
on C. This follows from the dominated convergence theorem and the fact that C generates A.

Thus, for P -almost every ω, there exists a unique probability measure KA0(ω, ·) on (Ω,A) such
that:

KA0
(ω,A) = fA(ω) for all A ∈ C.

Step 3: Measurability of the Kernel

For each A ∈ A, the map ω 7→ KA0
(ω,A) must be A0-measurable. Since C generates A, we use the

π-λ theorem: - Let L = {A ∈ A : KA0
(·, A) is A0-measurable}. - L is a λ-system containing the

π-system C, hence L = A.

Step 4: Joint Measurability

By Theorem 2, there exists a probability kernel µ from A0 to A such that:

P[ξ ∈ · | η] = µ(η, ·) a.e. L(η),

where ξ and η are random elements in Ω. Here, µ(η(ω), A) = KA0
(ω,A) for P -almost every ω. The

joint measurability of (ω,A) 7→ KA0
(ω,A) follows from the construction using a countable generator

C and the uniqueness of µ a.e. L(η).
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Step 5: Verification of Conditional Probability

For all A ∈ A, KA0
(ω,A) satisfies:

• Measurability: KA0
(·, A) is A0-measurable.

• Integration: For any B ∈ A0,∫
B

KA0
(ω,A) dP (ω) = P (A ∩B).

This holds for A ∈ C by construction and extends to all A ∈ A via the π-λ theorem.

Thus, KA0 is a regular conditional probability kernel.
cf.[BR07] and [KK02]

Thus, a regular conditional probability exists for any sub-σ-algebra A0 in a standard Borel space.
Remark. The standard Borel space assumption is essential. For general measurable spaces, regular
conditional probabilities may not exist.

4 The Uniqueness of Regular Conditional Probability
Regular conditional probabilities are unique up to P -null sets. That is, if KA0 and K̃A0 are both
regular conditional probabilities with respect to A0, then there exists a P -null set N such that for all
ω /∈ N and all A ∈ A,

KA0
(ω,A) = K̃A0

(ω,A).

This means the regular conditional probability is essentially unique: any two versions agree outside
a set of probability zero.

Proof of Uniqueness of Regular Conditional Probability. Let KA0 and K̃A0 be two regular conditional
probabilities with respect to A0. For each A ∈ A, define

NA = {ω ∈ Ω : KA0(ω,A) 6= K̃A0(ω,A)}.

Step 1: Null Sets for Countable Generator

By the definition of regular conditional probability, KA0
(·, A) and K̃A0

(·, A) are both versions of
E[1A | A0], hence they are equal P -almost surely. Thus, P (NA) = 0 for each A ∈ A.

Since A is standard Borel, let C be a countable π-system generating A. Define the union of null
sets:

N =
∪
A∈C

NA.

As C is countable, N is a countable union of P -null sets, so P (N) = 0.

Step 2: Extension to the Entire σ-Algebra via π-λ Theorem

Fix ω /∈ N . For this ω, define the collection of sets:

Dω = {A ∈ A : KA0
(ω,A) = K̃A0

(ω,A)}.

We show that Dω is a λ-system containing C:

• Contains Ω: KA0(ω,Ω) = 1 = K̃A0(ω,Ω), so Ω ∈ Dω.

• Closed under disjoint unions: If An ∈ Dω are pairwise disjoint, then:

KA0

(
ω,

∞∪
n=1

An

)
=

∞∑
n=1

KA0
(ω,An) =

∞∑
n=1

K̃A0
(ω,An) = K̃A0

(
ω,

∞∪
n=1

An

)
.
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• Closed under complements: If A ∈ Dω, then:

KA0(ω,A
c) = 1−KA0(ω,A) = 1− K̃A0(ω,A) = K̃A0(ω,A

c).

Since C ⊆ Dω (by ω /∈ N) and C is a π-system, the π-λ theorem implies σ(C) = A ⊆ Dω. Thus,
for all ω /∈ N , KA0

(ω,A) = K̃A0
(ω,A) for every A ∈ A.

The set N is P -null, and for all ω /∈ N , the kernels KA0
(ω, ·) and K̃A0

(ω, ·) agree on A. Hence,
regular conditional probabilities are unique up to P -null sets.

Remark. This uniqueness property ensures that, although the regular conditional probability may not
be defined uniquely everywhere, any two versions coincide almost surely.

5 Representation of Conditional Expectation as an Integral
By now, we have established that conditional probability admits a refined version (the regular condi-
tional probability), which qualifies as a probability measure. This allows us to define an integral with
respect to it.

In the following, we aim to demonstrate that this integral operation on the regular conditional
probability precisely coincides with the conditional expectation .

Theorem 3 (Representation of Conditional Expectation as an Integral). Let (Ω,A, P ) be a prob-
ability space, A0 ⊆ A a sub-σ-algebra, and K(ω,A) a regular conditional probability kernel such
that K(ω,A) = E[1A | A0](ω) a.e. for all A ∈ A. Then for any integrable random variable X, the
conditional expectation satisfies:

E[X | A0](ω) =

∫
Ω

X(ω′)K(ω, dω′) a.e. P.

Proof of Theorem 3.

Step 1: Indicator Functions

Let X = 1A for A ∈ A. By definition of the regular conditional probability:

E[1A | A0](ω) = K(ω,A) =

∫
Ω

1A(ω
′)K(ω, dω′) a.e. P.

Step 2: Simple Functions

Let X =
∑n

i=1 ai1Ai
with Ai ∈ A and ai ∈ R. By linearity of conditional expectation and integration:

E[X | A0](ω) =

n∑
i=1

aiE[1Ai
| A0](ω) =

n∑
i=1

ai

∫
Ω

1Ai
(ω′)K(ω, dω′) =

∫
Ω

X(ω′)K(ω, dω′).

Step 3: Non-Negative Measurable Functions

Let X ≥ 0 be measurable. Take an increasing sequence of simple functions Xn ↑ X. By the monotone
convergence theorem (MCT):

• E[Xn | A0] ↑ E[X | A0] a.e.

•
∫
XnK(ω, dω′) ↑

∫
XK(ω, dω′).

Thus:

E[X | A0](ω) = lim
n→∞

E[Xn | A0](ω) = lim
n→∞

∫
XnK(ω, dω′) =

∫
XK(ω, dω′) a.e. P.

Step 4: General Integrable Functions

For arbitrary integrable X, decompose X = X+ −X− with X± ≥ 0. By Step 3:

E[X | A0] = E[X+ | A0]−E[X− | A0] =

∫
X+K(ω, dω′)−

∫
X−K(ω, dω′) =

∫
XK(ω, dω′) a.e. P.
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Step 5: Measurability and Uniqueness

• Measurability: The integral
∫
XK(ω, dω′) is A0-measurable by construction of the kernel K.

• Uniqueness: Regular conditional probability kernels agree a.e. P , ensuring the integral repre-
sentation is unique a.e.

6 Conclusion
Through this assignment, we have systematically clarified the construction logic of Regular Conditional
Probability and rigorously proved its existence and uniqueness in standard Borel spaces. This result
demonstrates that, in measure spaces with well-behaved topological structures, conditional probability
can be elevated to a probability kernel KA0(ω,A) dependent on sample points � , thereby resolving the
“null set selection problem” inherent in classical definitions of conditional probability (where properties
depend on specific events A ). This conclusion provides a rigorous mathematical foundation for the
integral representation of conditional expectation.

However, the construction of regular conditional probability heavily relies on the structural prop-
erties of the underlying space. If extended to general measurable spaces, the existence of such kernels
may fail.
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