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Notations

We denote by K an arbitrary field of characteristic ̸= 2.(
a

p

)
being the Legendre symbol.

We will often denote by the same letter an element and its class
modulo.
Assume familiarity with quadratic residues and basic knowledge of
p-adic numbers and p-adic field.
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What is a Quadratic Form/Quadratic Space?

Definition (Quadratic Space)

Let V be a vector space (finite-dimensional) over a field K of characteristic
̸= 2. A function Q : V → K is called quadratic form on V satisfying:

Q(λv) = λ2Q(v) for all λ ∈ K, v ∈ V ,
The function BQ(u, v) = Q(u+ v)−Q(u)−Q(v) is a symmetric
bilinear form on V .

A quadratic space is such a pair (V,Q).

Put x · y = 1
2BQ(x, y). One has Q(x) = x · x.

Given a basis {e1, . . . , en} of V , the quadratic form Q can be
associated with a symmetric matrix A = (aij) where aij = ei · ej .

If x =

n∑
i=1

xiei ∈ V , then Q(x) =

n∑
i,j=1

aijxixj .
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Translations

Let us consider quadratic forms in a more familiar form:
f(X) =

∑n
i,j=1 aijXiXj is a quadratic form in n variables over K,

where aij = aji.
The pair (Kn, f) is a quadratic space.
The matrix A = (aij) is associated with f .
Let f(X1, · · · , Xn) and g(X1, · · · , Xm) be two quadratic forms, we
denote f ⊕ g the quadratic form

f(X1, · · · , Xn) + g(Xn+1, · · · , Xn+m)

in n+m variables.
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Invariant: Discriminant

Change the basis {ei} to another basis {e′i}; the associated symmetric
matrix A transforms as A′ = PAP T .

Two quadratic forms are equivalent if their matrices are congruent
under such a transformation.
We know that any symmetric matrix can always be diagonalized by a
congruence transformation.
Without loss of generality, assume quadratic forms are of the shape

f ∼
n∑

i=1

aiX
2
i

And A′ = PAP T give us: det(A) = det(A′) det(P )2.

This means the image of det(A) in K×/K×2 is a invariant, it’s called
discriminant of Q, and denoted by d(Q) or simply d.
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The case over R

Theorem (Sylvester’s law of inertia)

Let f =
∑n

i,j=1 aijXiXj be a quadratic form of rank n over R. Then

f ∼ X2
1 +X2

2 + · · ·+X2
r −X2

r+1 − · · · −X2
r+s.

where r and s are non-negative integers, and r + s = n, the pair (r, s) is
called signature of f .

By diagonalizing via congruence and factoring out squares on the diagonal,
we see that the only invariants for classifying real quadratic forms are:

the rank rank f = n.
the signature (r, s) := (#positive eigenvalues,#negative eigenvalues).

The rank and signature are invariants.
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General Ideas

On an arbitrary field K:
The rank is always an invariants. Hence we may (and we shall always)
reduce to classify the non-degenerate quadratic forms of rankn.
Two quadratic forms f =

∑
i ̸=j aijXiXj and f ′ =

∑
i ̸=j a

′
ijXiXj

satisfy: there exist tij ∈ K×2 s.t. aij = tija
′
ij , then f ∼ f ′.

The distribution of diagonal elements in K×/K×2 suffices to show
the equivalence

C×/(C×)2 ∼= {1}, suffices to classify by the rank.
R×/(R×)2 ∼= {1,−1}, signature is also needed.
F×
q /(F×

q )
2 ∼= {1, a}, where a ∈ Fq isn’t a square.

For Qp and Q?
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The case over Fq

Following the above discussion, we might hope that the number of
squares appearing on the diagonal would serve as a sufficient criterion
for equivalence. However, this is not the case.
Consider the non-degenerate quadratic form of rank 2 in 2 variables
over Fq with a quadratic nonresidue a, aX2 + aY 2 ∼ X2 + Y 2.

Do a change of basis: X = sX ′ + tY ′ and Y = tX ′ − sY ′. If we
requier aX ′2 + aY ′2 = X2 + Y 2, then s2 + t2 = a. Then we must
focus on the existence of solution of eqation s2 + t2 = a.
s2 and a−t2 have both (q + 1)/2 possible values, the pigeonhole
principle implies the eqation has a nonzero solution.

The discriminant det(A) ∈ F×
q /F×

q
2 is an invariant for classifying

quadratic forms.
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Hilbert Symbol

The existence of nonzero solutions to the equation aX2 + bY 2 = Z2 in
K3 seems to be of great importance.

Definition (Hilbert symbol)

Let a, b ∈ K×:

(a, b)K =

{
1 if Z2 − aX2 − bY 2 = 0 has a nontrivial solution in K3,

−1 if Z2 − aX2 − bY 2 = 0 has no nontrivial solution in K3.

The number (a, b)K is called the Hilbert symbol of a and b relative to K.
(When there is no ambiguity, the subscript is often omitted.)

The symbol may also be viewed in K×/(K×)2 when working with
non-degenerate forms.
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The Hilbert Symbol over Qp

From now on, we always assume K = Qp for a prime p：

Theorem (([Ser73] p. 20, chap. 3, sec. 1.2, theorem 1))

Say a = pαu and b = pβv are p-adic numbers where u, v ∈ Z×
p , then

(a, b) = (−1)α·β·
p−1
2

(
u

p

)β (v

p

)α

if p ̸= 2

(a, b) = (−1)
u−1
2

v−1
2

+α v2−1
8

+β u2−1
8 if p = 2

This means that Hilbert symbol is a symmetric non-degenerate
bilinear form.
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The Multiplicative Formula of Hilbert Symbol

Let V = P ∪ {∞}, and Q∞ = R. If a, b ∈ Q×, (a, b)v denotes the Hilbert
symbol of their images in Qv for all v ∈ V.

Proposition (Multiplicative formula)

If a, b ∈ Q×, we have (a, b)v = 1 for almost all v ∈ V and∏
v∈V

(a, b)v = 1.

We have seen that the Hilbert symbol works for rank 2, but how do
we generalize to rank > 2?
Let ε(f) =

∏
i<j(ai, aj), which is called the Hasse invariant of f .
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The Two Invariants
We have reduced to work with non-degenerate diagonalized quadratic
forms of rank n.

Recall that the discriminant
d(f) = a1a2 . . . an ∈ Q×

p /(Q×
p )

2

is an invariant.
Recall that the Hasse invariant

ε(f) :=
∏

1≤i<j≤n

(ai, aj)

is also an invariant.
If f = a1X

2
1 ⊕ f1 where f1 = a2X

2
2 + · · ·+ anX

2
n, then we have:

d(f) =

n∏
i=1

ai = a1

n∏
i=2

ai = a1d(f1).

ε(f) =
∏

1≤i<j≤n

(ai, aj) = ε(f1) · (a1, a2 · · · an) = ε(f1) · (a1, a1d(f))
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Decomposition of Quadratic Forms

On an arbitrary field K, we say that a quadratic form f represents a ∈ K
if there exists a nonzero v ∈ V such that f(v) = a.

It may be viewed in {0} ∪K×/(K×)2.

Proposition (([Ser73] p. 33, chap. 4, sec. 1.6, corollary 1))

Let a ∈ K×. TFAE:
f represents a
f ∼ g ⊕ aZ2 where g is of rank rank f − 1.
f ⊕−aZ2 represents 0.

To check if a can be represented by f , it suffices to examine when a
quadratic form represents 0.
Suppose f1 and f2 can both represent some a ∈ K×, then we hope to
reduce their rank and use induction in subsequent proofs.
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Conditions for decomposing quadratic forms
We mention some results here without details.
Theorem (Witt ([Ser73] p. 31, chap. 4, sec. 1.5, theorem 3))

Every injective metric-preserving map from a subspace U of a quadratic
space V to another quadratic space W may be extended to a
metric-preserving map from V to W .

If a quadratic space (V,Q) has two isometric subspaces U and W ,
then by Witt’s theorem, the isometry can be extended to an
automorphism of V . By restricting this automorphism to U⊥, we see
that U⊥ and W⊥ are also isometric. The results about quadratic
spaces can be translated into results about quadratic forms：

Theorem (Witt’s cancellation ([Ser73] p. 34, chap. 4, sec. 1.6,
theorem 4))

f1 ⊕ g1 ∼ f2 ⊕ g2 and g1 ∼ g2 implies f1 ∼ f2.
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When does a quadratic form represent 0, a (a ∈ K×)?

Theorem (([Ser73] p. 36, chap. 4, sec. 2.2, theorem 6))

f represents 0 iff:
For n = 2: d = −1;
For n = 3: (−1,−d) = ε;
For n = 4: d ̸= 1 or d = 1 and ε = (−1,−1);
For n ≥ 5: no conditions.

By applying Theorem to fa = f ⊕−aZ2, we obtain:

Corollary (([Ser73] p. 37, chap. 4, sec. 2.2, corollary to themrem 6))

f represents a ∈ K×/K× iff:
For n = 1: a = d;
For n = 2: (a,−d) = ε;
For n = 3: a ̸= d or a = d and ε = (−1,−d);
For n ≥ 4: no conditions.
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Quadratic Forms f ∼ g over Qp

Theorem (([Ser73] p. 39, chap. 4, sec. 2.3, theorem 7))

Two non-degenerate quadratic forms of rank n over Qp are equivalent iff
they have the same discriminant d and Hasse invariant ε.

f, g have same d and ε, thus there exists a ∈ Q×
p which both

represented by f and g.
Then f ∼ f1 ⊕ aZ2, where f1 is of rank n− 1.
d and ε of f1 can be determined:

d(f1) = ad(f) = ad(g) = d(g1)
ε(f1) = ε(f) · (a, ad(f)) = ε(g) · (a, ad(g)) = ε(g1)

Thus f1, g1 share the same d and ε. QED by induction.

Liyve Classification of Quadratic Forms over Q 2025-09-11 23 / 41



Classification of Quadratic Forms over Qp

The invariants d and ε are not independent; they satisfy the following
relations:

For n = 1: ε = 1;
For n = 2: d ̸= −1 or ε = 1;
For n ≥ 3: no conditions.

Skeleton of Proof:
n = 1: f = aX2 has ε = 1 and d = a is arbitrary.
n = 2: f = aX2 + Y 2 has ε = (a, b) = (a,−ab). If d = ab = −1,
then ε = 1. Conversely:

if d = −1, ε = 1: take f = X2 − Y 2

if d ̸= −1, since the Hilbert symbol is non-degenerate, there exists
a ∈ Q×

p such that (a,−d) = ε. Take f = aX2 + adY 2.
(when d = −1, f = X2 − Y 2 = aX2 + adY 2)

n = 3: Choose a ∈ Q×
p /Q×

p
2 and a ̸= d. There exsits form g of rank

2 s.t. d(g) = ad, ε(g) = ε(a,−d). The form f = g ⊕ aZ2 works.
n > 3: Take f = g(X1, X2, X3)⊕ a4X

2 ⊕ · · · ⊕ anX
2
n.

Liyve Classification of Quadratic Forms over Q 2025-09-11 24 / 41



Table of Contents

1 Motivation and Introduction
Quadratic Forms and Quadratic Spaces over Field.
Review: Classification of Quadratic Forms over R and Fq

Representation Numbers of Quadratic Forms

2 Quadratic Forms over Qp and Q
Quadratic Forms over Qp

Quadratic Forms over Q

3 Appendix
Lemmas Required for the Proof
Proof of Hasse-Minkowski Theorem

Liyve Classification of Quadratic Forms over Q 2025-09-11 25 / 41



Quadratic Forms f ∼ g over Q

Theorem (Hasse-Minkowski)

f represents 0 over Q iff it represents 0 over R and all Qp.

Theorem (([Ser73] p. 44, chap. 4, sec. 3.3, theorem 9))

Two non-degenerate quadratic forms of rank n over Q are equivalent iff
they are equivalent over each Qv.

Suppose f ∼ g over Qv for all v, then there exists a ∈ Q represented
by both f and g.
Thus f ∼ aZ2 ⊕ f1, g ∼ aZ2 ⊕ g1, where rank f1 = rank g1 = n− 1.
By Witt’s cancellation theorem, we have f1 ∼ g1 over Qv for all
v ∈ V.
By induction on rank n, f1 ∼ g1 over Q, thus f ∼ g over Q.
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Classification of Quadratic Forms over Q

Proposition (Conclusion over Q)

The invariants d and ε are not independent; they satisfy the following
relations:

εv = 1 for almost v ∈ V, and
∏

v∈V εv = 1.
εv = 1 if n = 1 and if n = 2 and if the image dv of d in Q×

p /Q×
p
2 is

equal to −1.
r, s ≥ 0 and r + s = rank.
d∞ = (−1)s

ε∞ = (−1)s(s−1)/2

Let d, (εv)v∈V, and (r, s) vertify the relations above, then there exists a
quadratic form of rank n over Q having for invariants d, (εv)v∈V, and
(r, s).
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Lemmas

Lemma
Let fi ∈ Zp[X1, · · · , Xm] be homogeneous polynomials with p-adic integer
coefficents. TFAE:

The fi have a non trivial common zero in (Qp)
m

The fi have acommon primitive zero(i.e. solution
(z, x, y) ̸≡ (0, 0, 0)(mod p)) in (Zp)

m

For all n > 1, the fi have a common primitive zero in (Z/pnZ)m.

Lemma
Let a, b ∈ K× and let Kb = K(

√
b). For (a, b) = 1 ⇐⇒ a ∈ N(K×

b ) of
norms of elements of K×

b .
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Lemmas

Lemma
Let f = g ⊕−h, TFAE:

f represents 0
There exists a ∈ K× which is represented by g and h.

Theorem
Let (ai)i∈I be a finite family of elements in Q× and let (εi,v)i∈I,v∈V be a
family of numbers equal to ±1. In order that there exists x ∈ Q× such
that (ai, x)v = εi,v for all i ∈ I and v ∈ V iff the following conditions be
satisfied:

Almost all the εi,v = 1∏
v∈V εi,v = 1 for all i ∈ I

For all v ∈ V there exists xv ∈ Q×
p such that (ai, xv)v = εi,v for all

i ∈ I.
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Lemmas

Theorem (Approximation Theorem)

Let S ⊆ V be a finite set. The image of Q in
∏

v∈S Qv is dense.

Lemma
All quadratic forms in at least 3 variavles over Fq have a non trivial zero.

Lemma
Suppose p ̸= 2. Let f be a quadratic form with coefficients in Zp whose
discriminant det(aij) is invertible. Let a ∈ Zp, every primitive solution of
the equation f(x) ≡ a(mod p) lifts to a true solutons.
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Proof

Theorem (Hasse-Minkowski)

f represents 0 over Q iff it represents 0 over R and all Qp.

The necessity is trivial. W.L.O.G., f =
∑n

i=1 aiX
2
i , ai ∈ Q×. By

replacing f by a1f , we can soppose ai = 1

n = 2: Suppose f = X2
1 − aX2

2

f∞ represents 0 implies a > 0. Let a =
∏

p prime p
νp(a).

fv represents 0 implies that νp(a) is even. Then a is a square, f
represents 0 over Q.
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Proof

n = 3: Suppose f = X2
1 − aX2

2 − bX2
3 , we can assume a, b are

square-free and |a| ≤ |b|. Proceed by induction on m = |a|+ |b|.
If m = 2, then f = X2

1 ±X2
2 ±X2

3 .
f∞ represents 0 implies f ̸= X2

1 +X2
2 +X2

3 .
In other cases, f represents 0 by f(1, 1, 0).

If m > 2, then b ≥ 2, let b = ±p1 · · · pk.
We need to show a is a square modulo pi for all i.
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Proof

It is obvious if a ≡ 0 (mod pi).
Otherwise, a is a pi-adic unit.
By hypothesis, f = X2

1 − aX2
2 − bX2

3 represents 0, i.e. z2 − ax2 − by2

has a nontrivial zero in (Qpi)
3.

By the lemma, z2 − ax2 − by2 has a primitive zero (z, x, y) in (Zpi)
3.

We have z2 − ax2 ≡ 0 (mod pi).
If x ≡ 0 (mod pi), then z ≡ 0 (mod pi).
Then p2i | by2 = z2 − ax2, but νpi(b) = 1 implies y ≡ 0 (mod pi).
Thus (z, x, y) ≡ (0, 0, 0) (mod pi), which is a contradiction, hence
x ̸≡ 0 (mod pi).
Moreover, a =

(
z
x

)2 is a square modulo pi.
Since Z/bZ ∼=

∏k
i=1 Z/piZ, a is a square modulo b.
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Proof

There exist t, b′ integers such that t2 = a+ bb′.
We can choose t such that |t| ≤ | b2 |. bb′ = t2 − a is a norm from
K(

√
a) where K = Q or Qp.

By above lemma (a, bb′) = 1, hence (a, b) = 1 ⇐⇒ (a, b′) = 1.
That means f = X2

1 − aX2
2 − bX2

3 represents 0 iff
f ′ = X2

1 − aX2
2 − b′X2

3 represents 0.
|b′| = | t2−a

b | ≤ | t2b |+ |ab | ≤
|b|
4 + 1 ≤ |b|.

Write b′ = u2b′′, where b′′ is square-free. We have |b′′| ≤ |b|.
The inductive hypothesis applies to f ′′ = X2

1 − aX2
2 − b′′X2

3 , so it
represents 0, and the same is true for f .
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Proof

n = 4: Suppose f = aX2
1 + bX2

2 − (cX2
3 + dX2

4 ). There exists
a ∈ K× which is represented by aX2

1 + bX2
2 and cX2

3 + dX2
4 .

(xv,−ab)v = (a, b)v and (xv,−cd)v = (c, d)v for all v ∈ V
By above theorem there exists x ∈ Q× s.t. (x,−ab)v = (a, b)v and
(x,−cd)v = (c, d)v for all v ∈ V
This means aX2

1 + bX2
2 and cX2

3 + dX2
4 represents x in Qp

i.e. aX2 + bY 2 − xZ2 represents 0 in all Qv also Q, and the same
argument applied to cX2

3 + dX2
4 , the fact that f represents 0 in Q

follows from this.
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Proof

n ≥ 5: we use induction on n. Suppose f = h⊕−g with
h = a1X

2
1 + a2X

2
2 , g = −(a3X

2
3 + · · ·+ anX

2
n).

Let S = {p ∈ V | νp(ai) ̸= 0, i ≥ 3} ∪ {2,∞}, it is a finite set.
Let v ∈ S, fv represents 0, so there exists av ∈ Q×

v which is
represented by both h and g in Qv.
That is, there exist x(v)1 , x

(v)
2 ∈ Qv such that h(x(v)1 , x

(v)
2 ) = av, and

x
(v)
3 , . . . , x

(v)
n ∈ Qv such that g(x

(v)
3 , . . . , x

(v)
n ) = av.

The set Q×2
v is open in Q×

v , so
∏

avQ
×2
v is also open in

∏
v∈S Q×

v ,
and h is a continuous map.
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Proof

By the Approximation Theorem, there exists a ∈ Q× such that
a ∈ avQ

×2
v for all v ∈ S.

Thus, (x1, x2) ∈ (Q)2 s.t. h(x1, x2) = a, and a/av ∈ Q×2 for all
v ∈ S.
Consider f1 = aZ2 ⊕−g.

if v ∈ S, g represents av, also a since a/av ∈ Q×2.
if v ̸∈ S, the coeffients are v-adic units, the d(g) is also a unit. And
because v ̸= 2, we have ε(g) = 1.

By above lemma, there exist a solution, and it lifts a true solution.
In all case we see f1 represents 0 in Qv, and rank f1 = n− 1.
By inductive hypothesis: f1 represents 0 in Q. i.e. g represents a, and
h represents a.
The proof is complete.
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