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1 Rings and Ideals
1.1 Rings and Ring Homomorphisms
Definition 1.1.1 (Ring). A ring A is a set with two binary operations, usually called addition and
multiplication, such that:

1. (A,+) is an abelian group,

2. (A, ·) is a semigroup,

3. Multiplication is distributive over addition: for all a, b, c ∈ A, a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.

4. Multiplication is commutative: for all a, b ∈ A, a · b = b · a.

5. There exists a multiplicative identity 1 ∈ A such that for all a ∈ A, a · 1 = 1 · a = a.

Definition 1.1.2 (Ring Homomorphism). A ring homomorphism is a mapping f : A → B between
rings A and B such that for all a, a′ ∈ A:

1. f(a+ a′) = f(a) + f(a′),
∗Last modified on 2025-06-25.
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2. f(a · a′) = f(a) · f(a′),

3. f(1A) = 1B .

1.2 Ideals and Quotient Rings
Definition 1.2.1 (Ideal). An ideal a of a ring A is a subset a ⊆ A such that:

1. (a,+) is a subgroup of (A,+),

2. For all a ∈ a and r ∈ A, both ra and ar are in a (i.e., a is closed under multiplication by elements
of A).

Definition 1.2.2 (Quotient Ring). The quotient ring A/a is defined as follows: Let A be a ring and
a an ideal of A. The set of cosets

A/a = {a+ a | a ∈ A}

forms a ring with operations defined by

(a+ a) + (b+ a) = (a+ b) + a, (a+ a) · (b+ a) = (ab) + a.

The natural projection π : A → A/a given by π(a) = a+a is a surjective ring homomorphism with
kernel a.

Proposition 1.2.3 (Correspondence of Ideals). Let A be a ring and a ◁ A an ideal. There is
a bijective correspondence between the set of ideals of A containing a and the set of ideals of the
quotient ring A/a.

Explicitly, for each ideal b of A with a ⊆ b, the image b̄ = b/a is an ideal of A/a. Conversely, for
each ideal b̄ of A/a, its preimage under the natural projection π : A → A/a is an ideal of A containing
a.

This correspondence preserves inclusion, sums, intersections, and properties such as being prime
or maximal (with suitable conditions).

{b ◁ A | a ⊆ b} ↔ {b̄ ◁ A/a}

Definition 1.2.4 (Kernel). Let f : A → B be a ring homomorphism. The kernel of f , denoted ker f ,
is the set

ker f = {a ∈ A | f(a) = 0B}

where 0B is the additive identity in B. The kernel ker f is an ideal of A.

Definition 1.2.5 (Image). Let f : A → B be a ring homomorphism. The image of f , denoted Im f ,
is the set

Im f = {f(a) | a ∈ A}

which is a subring of B.

1.3 Zero-Divisors, Nilpotent Elements and Units
Definition 1.3.1 (Zero Divisor). Let A be a ring. An element a ∈ A, a 6= 0, is called a zero-divisor
if there exists a nonzero b ∈ A such that ab = 0 or ba = 0.

Definition 1.3.2 (Integral Domain). A ring A is called an integral domain if A 6= {0} and A has
no zero-divisors; that is, for all a, b ∈ A, if ab = 0, then either a = 0 or b = 0.

Definition 1.3.3 (Nilpotent). Let A be a ring. An element a ∈ A is called nilpotent if there exists
a positive integer n such that an = 0.

Definition 1.3.4 (Unit). An element u ∈ A of a ring A is called a unit if there exists v ∈ A such
that uv = vu = 1, where 1 is the multiplicative identity in A. The set of all units in A is denoted by
A×.
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Definition 1.3.5 (Principal Ideal). An ideal a of a ring A is called a principal ideal if there exists
an element a ∈ A such that

a = (a) = {ra | r ∈ A}.

That is, a is generated by a single element a.

Proposition 1.3.6. Let A 6= 0 , then TFAE:

1. A is a field

2. the only ideals in A are (0) and A(= (1)).

3. ∀f : A → B 6= 0 is injective.

Proof.

(1) =⇒ (2) : Let a ◁ A. If a 6= 0, then ∃x is a unit ,x ∈ a
(2) =⇒ (3) : The kernel ker f is either {0} or A. If ker f = A, then f is the zero map, so Im f = {0},

contradicting B 6= 0. Thus, ker f = {0}, so f is injective.
(3) =⇒ (1) : Let x be not a unit. (x) 6= (1). Let B = A/(x), f(x) = 0 =⇒ x = 0.

1.4 Prime Ideals and Maximal Ideals
Definition 1.4.1 (Prime Ideal). An ideal p in A is prime if p 6= (1) and if xy ∈ p =⇒ x ∈ p or y ∈ p.

Definition 1.4.2 (Maximal Ideal). An ideal m in A is maximal if m 6= (1) and there is no ideal a s.t.
m ⊊ a ⊊ (1).

Proposition 1.4.3.

1. p is prime ideal ⇔ A/p is integral domain.
2. m is maximal ideal ⇔ A/m is field. Hence maximal ideals are prime.
3. Let f : A → B is ring homomorphism. p is a prime ideal in B, then f−1(p) is prime in A.

Proof.

(1)(2) : Omitted. cf.[聂灵沼 21, Ch.3, Sec.4, p.110, thm.7, thm.8]
(3) : You can consider the preimage f−1(p) = {a ∈ A | f(a) ∈ p}. If xy ∈ f−1(p), then f(xy) =

f(x)f(y) ∈ p. Since p is prime, f(x) ∈ p or f(y) ∈ p, so x ∈ f−1(p) or y ∈ f−1(p).

In particular, you can consider A/f−1(p) ∼= B/p.

Remark. Note that if m ◁ B is maximal, then f−1(m) is a maximal ideal of A if f is surjective. In
general, the preimage of a maximal ideal under a ring homomorphism need not be maximal unless
the map is surjective.

Let f : Z → Q be the natural embedding, m = (0). Q is a field, m is maximal, but its preimage
f−1(m) = (0) in Z is properly contained in (p), for any p ∈ N.

Lemma 1.4.4 (Zorn’s lemma). Let S be a non-empty partially ordered set such that every chain
(i.e., totally ordered subset) in S has an upper bound in S. Then S contains at least one maximal
element; that is, there exists m ∈ S such that if m ≤ s for some s ∈ S, then m = s.

Theorem 1.4.5 (Existence of Maximal Ideals). Every nonzero ring A with 1 has at least one maximal
ideal.

Proof. Let S be the set of all proper ideals of A, partially ordered by inclusion. S is nonempty since
(0) is a proper ideal (as A 6= 0). Any chain of ideals in S has an upper bound given by the union
of the chain, which is again a proper ideal. By Zorn’s Lemma, S has a maximal element, which is a
maximal ideal of A.

Corollary 1.4.6 (Every Ideal is Contained in a Maximal Ideal). If a be a proper ideal of A, then ∃m
is maximal, s.t. a ⊆ m.
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Proof. Let a be a proper ideal of A (i.e., a 6= (1)). Consider the quotient ring A/a. By the existence of
maximal ideals, A/a has a maximal ideal m̄. The preimage m = π−1(m̄) under the natural projection
π : A → A/a is a maximal ideal of A containing a.

Corollary 1.4.7 (Every Non-Unit is Contained in a Maximal Ideal). Every non-unit element of A is
contained in some maximal ideal of A. Let a ∈ A be a non-unit. Then the ideal (a) generated by a
is a proper ideal, i.e., (a) 6= (1). By the previous corollary, there exists a maximal ideal m such that
(a) ⊆ m. Thus, a ∈ m.

Proof. Let S be the set of all proper ideals of A, partially ordered by inclusion. S is nonempty since
(0) is a proper ideal (as A 6= 0). Any chain of ideals in S has an upper bound given by the union
of the chain, which is again a proper ideal. By Zorn’s Lemma, S has a maximal element, which is a
maximal ideal of A.

Definition 1.4.8 (Local Ring). A ring A is called a local ring if it has a unique maximal ideal m.
That is, there exists exactly one maximal ideal in A.

Definition 1.4.9 (Residue Field). Let A be a local ring with unique maximal ideal m. The residue
field of A is the quotient ring

k = A/m

which is a field. The natural projection A → k is called the residue map.

Proposition 1.4.10.

1. Let A be a ring and m 6= (1), s.t. ∀x ∈ A\m is a unit. Then A is a local ring, and m is maximal.

2. Let A be a ring and m maximal ideal of A, s.t. 1 +m is a unit of A. Then A is a local ring.

Proof.

(1) : Every non-unit is contained in m. Hence m is the only maximal ideal.
(2) : ∀n ◁ A. If n 6⊆ m, take x ∈ n \m. (x) +m = (1). ∃y ∈ A,m ∈ m, xy +m = 1 =⇒ xy = 1−m

is a unit. Then n = (1). Contradiction!

Definition 1.4.11 (Semi-local Ring). A ring A is called semi-local if A has only finitely many
maximal ideals.

Definition 1.4.12 (PID). An integral domain A is called a principal ideal domain (PID) if every
ideal of A is principal; that is, for every ideal a ⊆ A, there exists a ∈ A such that a = (a) = {ra | r ∈
A}.

Proposition 1.4.13. In PID, a is prime ⇔ a is maximal.

Proof. If (x) 6= (1) is prime. Let (x) ⊊ (y). Then x ∈ (y) =⇒ ∃z s.t. x = yz. y 6∈ (x) =⇒ z ∈
(x) =⇒ ∃t, s.t. z = xt.$

1.5 Nilradical and Jacobson Radical
Proposition 1.5.1.

1. The set N of all nilpotent elements of A is an ideal.

N = {a ∈ A | a is nilpotent}

2. And A/N has no non-zero nilpotent element.

Proof.

(1) : If x ∈ N, then ax ∈ N, for ∀ a ∈ A. ∀x, y ∈ N, ∃m, n, xm = yn = 0, then

(x+ y)m+n−1 = 0 =⇒ x+ y ∈ N.
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(2) : If x̄n = 0, xn ∈ N =⇒ ∃k, xnk = 0 =⇒ x ∈ N =⇒ x̄ = 0.

Definition 1.5.2 (Nilradical). The set N is called Nilradical of A.

Proposition 1.5.3. The nilradical N of a ring A is equal to the intersection of all prime ideals of A
That is, an element a ∈ A is nilpotent if and only if a belongs to every prime ideal of A.
Let

N′ =
∩

p prime
p

We need to show N = N′

Proof.

(N ⊆ N′) : If x ∈ N, then xn = 0 ∈ p for any p. It implies x ∈ p for any p.
(N′ ⊆ N) : Suppose ∀n > 0, xn 6= 0. Let

Σ = {a ◁ A | xn 6∈ a, ∀n > 0}.

Let T be a totally ordered chain in Σ. Consider aT =
∪

a∈T a. We claim that aT ∈ Σ.

• aT is an ideal: Since T is a chain, the union of the ideals in T is again an ideal.
• For all n > 0, if xn ∈ aT , then xn ∈ a for some a ∈ T , contradicting the definition of Σ.

Thus, every chain in Σ has an upper bound, so by Zorn’s Lemma, Σ has a maximal element, say
p. We claim that p is a prime ideal.

Suppose a, b /∈ p. Then the ideals a1 = p+(a) and a2 = p+(b) strictly contain p, so by maximality,
there exist n1, n2 > 0 such that xn1 ∈ a1 and xn2 ∈ a2. Thus,

xn1 = y1 + az1, xn2 = y2 + bz2

for some y1, y2 ∈ p, z1, z2 ∈ A. Then

xn1+n2 = (xn1)(xn2) = (y1 + az1)(y2 + bz2)

Expanding and using that p is an ideal, all terms except abz1z2 are in p, so

xn1+n2 − abz1z2 ∈ p =⇒ xn1+n2 ∈ p+ (ab)

Thus, xn1+n2 ∈ p+(ab), so by maximality, xm ∈ p+(ab) for some m > 0, but xm /∈ p by construction,
so ab /∈ p.

Therefore, p is a prime ideal not containing any power of x, contradicting x ∈
∩

p prime p. Thus,
N = N′.

Definition 1.5.4 (Jacobson Radical). Let R be the intersection of all maximal ideals of A:

R =
∩

m maximal
m

This ideal is called the Jacobson radical of A.

Proposition 1.5.5. x ∈ R ⇔ 1− xy is a unit in A for all y ∈ A

Proof. ( =⇒ ): Suppose x ∈ R, but 1 − xy is not a unit for some y ∈ A. Then the ideal (1 − xy) is
proper, so it is contained in some maximal ideal m. Thus, 1 − xy ∈ m. But x ∈ R ⊆ m, so xy ∈ m,
hence 1 = (1− xy) + xy ∈ m, which is impossible since m is proper. Therefore, 1− xy must be a unit
for all y ∈ A.

(⇐=) : Suppose x /∈ m for some maximal ideal m. Then the ideal generated by x and m is the whole
ring: (x)+m = (1). This means there exist y ∈ A and t ∈ m such that xy+t = 1, or equivalently,
1 − xy = t ∈ m. Since m is maximal, 1 − xy is not a unit only if it lies in some maximal ideal,
but by assumption x /∈ m, so 1− xy cannot be non-invertible. Therefore, if 1− xy is a unit for
all y ∈ A, then x must be contained in every maximal ideal, i.e., x ∈ R.
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1.6 Operations on Arbitrary Families of Ideals
Let {ai}i∈I be a family of ideals in a ring A.

Definition 1.6.1 (Sum of Ideals). The sum
∑

i∈I ai is defined as:∑
i∈I

ai = {a1 + a2 + · · ·+ an | ak ∈ aik , ik ∈ I, n ≥ 1}

Definition 1.6.2 (Intersection of Ideals). The product
∏

i∈I ai is defined as:

∏
i∈I

ai =

{
m∑

k=1

a1,k · · · an,k | aj,k ∈ aj , m ≥ 1

}

(For infinite families, the product is usually defined only for finite subfamilies.)

Definition 1.6.3 (Product of Ideals). The intersection
∩

i∈I ai is defined as:∩
i∈I

ai = {a ∈ A | a ∈ ai for all i ∈ I}

1. Distributive law:
a(b+ ic) = ab+ ac

2. Modular law:
a ∩ (b+ c) = a ∩ b+ a ∩ c, if a ⊇ bor a ⊇ c

In general, we have a+ b(a∩ b) ⊆ ab. Clearly,ab ⊆ a∩ b, hence a∩ b = ab provided a+ b = (1).

Definition 1.6.4 (Coprime). Let a, b be ideals of A. We call a, b are coprime, when a+ b = A.

Definition 1.6.5 (Direct Product of Rings). Let {Ai}i∈I be a family of rings. The direct product∏
i∈I Ai is defined as ∏

i∈I

Ai := {(xi)i∈I | xi ∈ Ai for all i ∈ I}

with addition and multiplication defined componentwise:

(xi) + (yi) = (xi + yi), (xi) · (yi) = (xiyi)

for all (xi), (yi) ∈
∏

i∈I Ai.
Let Ai be rings, and let pi :

∏
j∈I Aj → Ai be the projection onto the i-th component, defined by

pi((xj)j∈I) = xi.

Definition 1.6.6 (Chinese Remainder Map). Let {ai}i∈I be a family of ideals of A. Define the
canonical ring homomorphism

Φ : A →
∏
i∈I

A/ai, a 7→ (a+ ai)i∈I

where each component is the natural projection ϕi : A → A/ai, a 7→ a+ ai.
This map Φ is a ring homomorphism, called the Chinese Remainder map associated to the

family {ai}.

Proposition 1.6.7. Let {ai}ni=1 be a family of ideals of A.

1. ∀i 6= j, ai, aj are coprime, then
∏n

i=1 ai =
∩n

i=1 ai.

2. ϕ is surjective ⇔ ai, aj are coprime.

3. ϕ is injective ⇔
∩n

i=1 ai = 0.

Proof. Omitted. cf.[AM18, ch.1, sec.6, p.7, prop.1.10].
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Theorem 1.6.8 (Chinese Remainder Theorem). Let A be a ring and a1, . . . , an be ideals of A such
that ai + aj = (1) for all i 6= j (i.e., the ideals are pairwise coprime). Then the canonical map

Φ : A →
n∏

i=1

A/ai, a 7→ (a+ a1, . . . , a+ an)

is surjective, and its kernel is
∩n

i=1 ai. Thus,

A/

(
n∩

i=1

ai

)
∼=

n∏
i=1

A/ai

as rings.
In particular, if A = Z and the ai = (ni) with gcd(ni, nj) = 1 for i 6= j, then

Z/(n1n2 · · ·nk) ∼= Z/n1 × · · · × Z/nk.

Proof. Let Φ : A →
∏n

i=1 A/ai be the canonical map, a 7→ (a+ a1, . . . , a+ an).

• Kernel: kerΦ =
∩n

i=1 ai, since a ∈ kerΦ iff a ∈ ai for all i.

• Surjectivity: For any (b1 + a1, . . . , bn + an) ∈
∏n

i=1 A/ai, we want a ∈ A such that a ≡ bi
(mod ai) for all i.

Since the ideals are pairwise coprime, for each i there exists ei ∈ A such that ei ≡ 1 (mod ai) and
ei ≡ 0 (mod aj) for j 6= i. (This follows from the Chinese Remainder construction: for each i, let
Ji =

∩
j ̸=i aj , then Ji + ai = (1), so 1 = xi + yi with xi ∈ Ji, yi ∈ ai; set ei = xi.)

Then set a =
∑n

i=1 biei. For each k, a ≡ bkek ≡ bk (mod ak), since ek ≡ 1 (mod ak) and ei ≡ 0
(mod ak) for i 6= k.

Thus, Φ is surjective.

• Isomorphism: By the First Isomorphism Theorem, A/ kerΦ ∼= ImΦ =
∏n

i=1 A/ai.

Therefore,

A/

(
n∩

i=1

ai

)
∼=

n∏
i=1

A/ai.

Remark. The union of ideals is not necessarily an ideal unless one contain the others.
In general, the union a∪ b fails to be closed under addition. For example, in Z, the ideals (2) and

(3) have union {. . . ,−6,−4,−3,−2, 0, 2, 3, 4, 6, . . .}, but 2 ∈ (2) and 3 ∈ (3), yet 2+ 3 = 5 /∈ (2)∪ (3).

Proposition 1.6.9.

1. Let p1, . . . , pn be prime ideals and let a be an ideal contained in
∪n

i=1 pi. Then a ⊆ pi for some
i.

2. Let a1, . . . , an be ideals and let p be a prime ideal containing
∩n

i=1 ai. Then p ⊇ ai for some i.
If p =

∩
ai, then p = ai for some i.

Proof. Omitted. cf.[AM18, ch.1, sec.6, p.8, prop.1.11].

Definition 1.6.10 (Quotion of Ideals). The set (a : b) = {x ∈ A | xb ⊆ a} is quotien of a and b.
This set is an ideal of A.

If b = (x) is a principal ideal of A, then (a : b) is denoted by (a : x).

Definition 1.6.11 (Annihilator). The set (0 : b) = {x ∈ A | xb = 0} is called the annihilator of b.
It is denoted by Ann(b).
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Proposition 1.6.12 (Zero-Divisors). The set of zero-divisors of a ring A is the set

D = {a ∈ A | ∃ b ∈ A, b 6= 0, ab = 0 or ba = 0}.

This set is not necessarily an ideal, but it is a union of ideals of A.

D =
∪
x ̸=0

Ann(x),

Moreover, it is a union of prime ideals of A.

D =
∪

p prime
p,

where the union is taken over all prime ideals of A.
In particular, every zero-divisor lies in some prime ideal.

Definition 1.6.13 (Radical of an Ideal). Let a be an ideal of a ring A. The radical of a, denoted√
a or r(a), is defined as √

a = {x ∈ A | ∃n > 0, xn ∈ a}
That is, x is in the radical of a if some power of x lies in a. The radical

√
a is itself an ideal of A.

If a = (0), then
√
(0) is the set of all nilpotent elements, i.e., the nilradical of A.

Proposition 1.6.14.

1. r(a) ⊇ a.

2. r(r(a)) = r(a).

3. r(ab) = r(a ∩ b) = r(a) ∩ r(b).

4. r(a) = (1) ⇔ a = (1).

5. r(a+ b) = r(r(a) + r(b)).

6. If p is prime, r(pn) = p for all n > 0.

Proof. Left to the reader. (Easy to check)

Proposition 1.6.15.
r(a) =

∩
p⊇a prime

p

.
Hint: Consider nilradical of the quotient ring A/a, and the corresponding of ideals.

Proof.1. Let π : A → A/a be the canonical projection. By the Correspondence Theorem, there is a
bijection between the set of prime ideals of A containing a and the set of prime ideals of A/a.

The nilradical of A/a, denoted N(A/a), is the intersection of all prime ideals of A/a:

N(A/a) =
∩

p̄ prime in A/a

p̄

The preimage of this intersection under π is the intersection of all prime ideals of A containing a:

π−1(N(A/a)) =
∩

p⊇a, p prime
p

On the other hand, N(A/a) consists of all elements x̄ = x + a such that (x + a)n = a for some
n ≥ 1, i.e., xn ∈ a. Thus,

π−1(N(A/a)) = {x ∈ A | xn ∈ a for some n ≥ 1} = r(a)

Therefore,
r(a) =

∩
p⊇a, p prime

p
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Proof.2. Let x ∈ r(a). Then xn ∈ a for some n > 0. For any prime ideal p ⊇ a, since p is prime and
xn ∈ p, it follows that x ∈ p. Thus, x is in every prime ideal containing a, so x ∈

∩
p⊇a prime p.

Conversely, suppose x /∈ r(a). Then xn /∈ a for all n > 0. Consider the quotient ring A/a and the
image x̄ of x. Then x̄n 6= 0 for all n > 0. By the proof of the nilradical as intersection of primes, there
exists a prime ideal p̄ of A/a not containing any power of x̄. The preimage p of p̄ under the projection
A → A/a is a prime ideal of A containing a but not x. Thus, x /∈

∩
p⊇a prime p.

Therefore, r(a) =
∩

p⊇a prime p.

Definition 1.6.16 (Radical of a Subset). More general, let S ⊆ A be any subset of a ring A. The
radical of S, denoted

√
S or r(S), is defined as the intersection of all prime ideals of A containing S:

√
S =

∩
p⊇S, p prime

p

Proposition 1.6.17.

1. r(
∩

α Eα) =
∩

α r(Eα).

2. D =
∩

x ̸=0 r(Ann(x)).

3. r(a), r(b) are coprime =⇒ a, b are coprime.

1.7 Extension and Contraction of Ideals
Let f : A → B be a ring homomorphism.

Definition 1.7.1 (Extension). Given an ideal a ⊆ A, the extension of a to B is the ideal

ae = f(a)B =

{
n∑

i=1

f(ai)bi | ai ∈ a, bi ∈ B, n ≥ 1

}

That is, ae is the ideal of B generated by the image of a.

Definition 1.7.2 (Contraction). Given an ideal b ⊆ B, the contraction of b to A is the ideal

bc = f−1(b) = {a ∈ A | f(a) ∈ b}

Proposition 1.7.3.

1. The extension of an ideal is always an ideal; the contraction of an ideal is always an ideal.

2. If a ⊆ A, then a ⊆ (ae)c.

3. If b ⊆ B, then (bc)e ⊆ b.

4. The set C = {ae | a ◁ A}, and E = {bc | b ◁ B}, then C = {a | aec = a}, and E = {b | bce = b}.

5. There is a correspondence between ideals of A and ideals of B that are stable under extension
and contraction, i.e., there is a bijective between E and C.

6. If f is surjective, then every ideal of B is the extension of its contraction.

7. The contraction of a prime ideal of B is a prime ideal of A.

8. The extension of a prime ideal of A need not be prime in B.

Proof. Left to the reader. (Easy to check) cf.[AM18, ch.1, sec.7, p.10, prop.1.17]
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1.8 Spectrum and Zariski Topology
This section all of proofs will be omitted, since we have discussed in seminar
Definition 1.8.1 (Spectrum of a Ring). The spectrum of a ring A, denoted SpecA, is the set of all
prime ideals of A:

SpecA = { p ⊆ A | p is a prime ideal }
Proposition 1.8.2 (Toplogy Structure of Spectum). Let A be a ring and let X be the set of all prime
ideals of A. For each subset E of A, let V (E) = { p ∈ SpecA | E ⊆ p }. Then we have: - If a is the
ideal generated by E, V (E) = V (a) = V (r(a)). - V (0) = SpecA; V (1) = ∅. - V (

∪
α aα) =

∩
α V (aα).

- V (a) ∪ V (b) = V (a ∩ b) = V (ab).
Definition 1.8.3 (Zariski Topology). The spectrum SpecA is equipped with the Zariski topology,
where the closed sets are of the form

V (E) = { p ∈ SpecA | E ⊆ p }
for some subset E ⊆ A.

In particular, for an ideal a ⊆ A, V (a) = { p | a ⊆ p }.
Proposition 1.8.4 (Open set of Spectum). For each f ∈ A, let Xf denote complement of V (f) in
X = SpecA. 0. The basic open sets are complements of V (f) for f ∈ A: Xf . The basic open sets is
a basis of Zariski topology.

1. Xf ∩Xg = Xfg.

2. Xf = ∅ ⇔ f is nilpotent.

3. Xf = X ⇔ f is a unit.

4. Xf = Xg ⇔ r((f)) = r((g)).

5. Each Xf is quasi-compact.

6. An open subset of X is quasi-compact if and only if it is a finite union of basic open sets
Xf1 , . . . , Xfn for some f1, . . . , fn ∈ A.

Proposition 1.8.5 (Closures of Spectum). Denote a prime ideal of A by a letter x or y when thinking
of it as a point of X = SpecA. When thinking of x as a prime ideal of A, we denote it by px.

1. The set {x} is closed in SpecA ⇔ p is maximal.

2. {x} = V px.

3. y ∈ {x} ⇔ px ⊆ py

4. X is a T0-space.
Remark. The Zariski topology is generally not Hausdorff; its closed sets are typically large. The points
corresponding to maximal ideals are called closed points.
Proposition 1.8.6 (Irreducible). A topology space X is said irreducible if X 6= ∅ and if every pair
of non-empty open sets in X intersect, or equivalently if every non-emtpy open set is dense in X.

1. SpecA is irreducible if and only if the nilradical of A is a prime ideal.

2. If Y is an irreducible subspace of X, then the closure Y of Y in X is irreducible.

3. Every irreducible subspace of X is contained in a maximal irreducible subspace.

4. The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible
components of X.

5. The irreducible components of SpecA are the closed sets V (p), where p is a minimal prime ideal
of A.

Remark. Let A 6= 0 is ring. Then A has the minimal prime ideal with respect to inclusion. (You can
consider Zorn’s lemma to prove this remark)
Definition 1.8.7 (Induced Map on Spectra). The map f : A → B induces a map on spectra:

f∗ : SpecB → SpecA, q 7→ f−1(q)

where SpecA denotes the set of all prime ideals of A.
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1.9 Affine Algebraic Varieties
Let k be a field. An affine algebraic variety over k is a subset V ⊆ kn defined as the common zeros
of a set of polynomials:

V = V (S) = {x ∈ kn | f(x) = 0 ∀f ∈ S }

for some subset S ⊆ k[x1, . . . , xn].
The set of all polynomials vanishing on V is an ideal:

I(V ) = { f ∈ k[x1, . . . , xn] | f(x) = 0 ∀x ∈ V }

There is a correspondence between affine varieties and radical ideals of k[x1, . . . , xn] (Hilbert’s
Nullstellensatz).

The coordinate ring of V is defined as

k[V ] = k[x1, . . . , xn]/I(V )

which encodes the algebraic structure of V .

2 Modules
2.1 Modules and Module Hom
Definition 2.1.1 (Module). Let A be a ring. An A-module M is an abelian group (M,+) together
with an action A×M → M , (a,m) 7→ am, such that for all a, b ∈ A and m,n ∈ M :

1. a(m+ n) = am+ an

2. (a+ b)m = am+ bm

3. (ab)m = a(bm)

4. 1m = m (if A has 1)

Definition 2.1.2 (Submodule). A submodule N of an A-module M is a subgroup N ≤ M such
that an ∈ N for all a ∈ A, n ∈ N .

Definition 2.1.3 (Module Homomorphism). Let M,N be A-modules. A map f : M → N is an
A-module homomorphism if for all m,m′ ∈ M and a ∈ A:

• f(m+m′) = f(m) + f(m′)

• f(am) = af(m)

The set of all A-module homomorphisms from M to N is denoted HomA(M,N).
Moreover, the set HomA(M,N) forms an abelian group under pointwise addition:

(f + g)(m) = f(m) + g(m)

for all f, g ∈ HomA(M,N) and m ∈ M .
If A is commutative, then HomA(M,N) is itself an A-module, with scalar multiplication defined

by
(af)(m) = a · f(m)

for a ∈ A, f ∈ HomA(M,N), and m ∈ M .
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2.2 Submodules and Quotient Modules
Definition 2.2.1 (Quotient Module). If N ≤ M is a submodule, the quotient module M/N is the
abelian group of cosets m+N with A-action a(m+N) = am+N .

Theorem 2.2.2 (Correspondence Theorem for Submodules). Let M be an A-module and N ≤ M
a submodule. There is a bijective correspondence between the set of submodules of M containing N
and the set of submodules of the quotient module M/N .

Definition 2.2.3 (Kernel, Image and Cokernel). Let f : M → N be an A-module homomorphism.

• The kernel is ker f = {m ∈ M | f(m) = 0}, a submodule of M .

• The image is Im f = {f(m) | m ∈ M}, a submodule of N .

• The cokernel is Coker f = N/ Im f .

Proposition 2.2.4 (First Isomorphism Theorem). Let f : M → N be an A-module homomorphism.
Then

M/ ker f ∼= Im f

as A-modules.

Proof. Define φ : M/ ker f → Im f by φ(m+ ker f) = f(m). This map is well-defined, A-linear, and
bijective.

2.3 Operation of Submodule
Let M be an A-module, and let {Ni}i∈I be a family of submodules of M .

Definition 2.3.1 (Sum of Submodules). The sum of submodules {Ni} is defined as:∑
i∈I

Ni =
{
n1 + · · ·+ nk | nj ∈ Nij , ij ∈ I, k ≥ 1

}
This is the smallest submodule of M containing all the Ni.

Definition 2.3.2 (Intersection of Submodules). The intersection of submodules {Ni} is:∩
i∈I

Ni = {m ∈ M | m ∈ Ni for all i ∈ I}

This is the largest submodule contained in all the Ni.

Proposition 2.3.3 (Lattice Structure). The set of submodules of M forms a lattice under sum and
intersection:

• N1 +N2 is the least upper bound (join) of N1 and N2.

• N1 ∩N2 is the greatest lower bound (meet).

Proposition 2.3.4 (Second Isomorphism Theorem). Let M be an A-module, and let N,P be sub-
modules of M . Then

(N + P )/P ∼= N/(N ∩ P )

as A-modules.

Proof. Define the map φ : N → (N+P )/P by φ(n) = n+P . This is an A-module homomorphism with
kernel N ∩P , and it is surjective. By the First Isomorphism Theorem, N/(N ∩P ) ∼= (N +P )/P .

Proposition 2.3.5 (Third Isomorphism Theorem). Let M be an A-module, and let N ⊆ P ⊆ M be
submodules. Then

(M/N)/(P/N) ∼= M/P

as A-modules.
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Proof. Consider the natural map φ : M/N → M/P given by m+N 7→ m+P . This is a well-defined
A-module homomorphism with kernel P/N . By the First Isomorphism Theorem, (M/N)/(P/N) ∼=
M/P .

Definition 2.3.6 (Submodule Generated by a Subset). Given a subset S ⊆ M , the submodule
generated by S is:

〈S〉 =


n∑

j=1

ajsj | aj ∈ A, sj ∈ S, n ≥ 1


This is the smallest submodule of M containing S.

Definition 2.3.7 (Product of Ideal and Submodule). Let A be a ring, M an A-module, a ⊆ A an
ideal, and N ≤ M a submodule. The product aN is defined as the submodule of M generated by
all products an with a ∈ a, n ∈ N :

aN =

{
k∑

i=1

aini | ai ∈ a, ni ∈ N, k ≥ 1

}

This is the smallest submodule of M containing all elements an with a ∈ a, n ∈ N .

Definition 2.3.8 (Quotient of Submodules). N,P ≤ M , then (N : P ) := { a ∈ A | aP ⊆ N } is an
ideal of A.

Definition 2.3.9 (Annihilator of a Module). Let M be an A-module. The annihilator of M is

AnnA(M) := (0 : M) = {a ∈ A | am = 0 for all m ∈ M}

which is an ideal of A.

Proposition 2.3.10. If a ⊆ Ann(M), then M is also A/a-module. The multiplication defined by
ām = am, It’s easy to check well-defined.

Definition 2.3.11. If Ann(M) = 0, then A-module M is faithful.
If Ann(M) = a, then M is faithful as a A/a-module.

2.4 Direct Sum and Direct Product
Definition 2.4.1 (Direct Sum and Direct Product of Modules). Let {Mi}i∈I be a family of A-modules.

• The direct product
∏

i∈I Mi is the set of all tuples (mi)i∈I with mi ∈ Mi, with addition and
scalar multiplication defined componentwise.

• The direct sum
⊕

i∈I Mi is the subset of the direct product consisting of tuples (mi)i∈I such
that mi = 0 for all but finitely many i.

Both
∏

i∈I Mi and
⊕

i∈I Mi are A-modules.

2.5 Finitely Generated Module
Definition 2.5.1 (Finitely Generated Module). An A-module M is finitely generated if there exist
elements m1, . . . ,mn ∈ M such that every m ∈ M can be written as

m = a1m1 + · · ·+ anmn

for some a1, . . . , an ∈ A. In other words, M = 〈m1, . . . ,mn〉.

Definition 2.5.2 (Free Module). Let A be a ring and S a set. The free A-module on S, denoted
F =

⊕
s∈S A, is the set of all functions f : S → A such that f(s) = 0 for all but finitely many s ∈ S.

Equivalently, elements of F are finite formal sums
n∑

i=1

aiesi
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where ai ∈ A, si ∈ S, and es is the function with es(t) = δs,t.
F is an A-module with addition and scalar multiplication defined componentwise.
If S is finite with n elements, then F ∼= An as A-modules.
A module M is free if it is isomorphic to a free module on some set S; that is, M ∼=

⊕
s∈S A for

some S.

Proposition 2.5.3. An A-module M is finitely generated if and only if there exists an integer n ≥ 0
and a submodule N ≤ An such that M ∼= An/N .

Proof Sketch: If M is finitely generated by m1, . . . ,mn, define a surjective A-module homomorphism
φ : An → M by φ(a1, . . . , an) = a1m1 + · · ·+ anmn. Then M ∼= An/ kerφ. Conversely, any quotient
of An is finitely generated.

Proposition 2.5.4. A quotient of a finitely generated module is finitely generated.

Proof. Hint: Let M be generated by m1, . . . ,mn and N ≤ M . Then M/N is generated by the images
of m1, . . . ,mn in M/N .

Theorem 2.5.5 (Hamilton-Cayley Theorem). Let M be a finitely generated A-module. Let a ◁ A,
and let ϕ : M → M be an A-module endomorphism such that ϕ(M) ⊆ aM . Then there exist
a1, . . . , an ∈ a (for some n) such that

ϕn + a1ϕ
n−1 + · · ·+ an = 0

as endomorphisms of M .

Proof. Let M be generated by m1, . . . ,mn. Since ϕ(M) ⊆ aM , for each i,

ϕ(mi) =

n∑
j=1

aijmj

with aij ∈ a. Let A = (aij) be the n× n matrix over a representing ϕ in this basis.
Consider the A-module homomorphism Φ : Mn → Mn given by Φ = ϕ · I − A, where I is

the identity. By the Cayley-Hamilton theorem for modules, the characteristic polynomial f(x) =
xn + a1x

n−1 + · · ·+ an with ai ∈ a annihilates ϕ:

f(ϕ) = ϕn + a1ϕ
n−1 + · · ·+ an = 0

as endomorphisms of M .

Corollary 2.5.6. Let M be a finitely generated A-module and a ◁ A such that aM = M . Then
there exists x ∈ A with x ≡ 1 (mod a) such that xM = 0.

Proof. Take ϕ = id. There exists 1+ a1 + a2 + · · ·+ an = 0 since Theorem 2.5.5, let x = 1+ a1 + a2 +
· · ·+ an.

Theorem 2.5.7 (Nakayama’s lemma). Let M be a finitely generated A-module and a ◁ A, if a ⊆ R,
then aM = M implies M = 0.

Proof. By Corollary 2.5.6, if aM = M and a ⊆ R, then there exists x ∈ A with x ≡ 1 (mod a) such
that xM = 0. That is, x = 1 + a for some a ∈ a, and xM = 0.

But 1+ a is a unit in A (since a ∈ R and Proposition 1.5.5). Therefore, x is invertible, so xM = 0
implies M = 0.

Corollary 2.5.8. Let M be a finitely generated A-module, N is a submodule of M , a ◁ A, if a ⊆ R,
then M = aM +N implies N = M .

Proof. Consider the quotient module M/N . Since M = aM +N , we have

M/N = (aM +N)/N ∼= aM/(aM ∩N) ⊆ a(M/N)

so M/N = a(M/N). By Theorem 2.5.7, since a ⊆ R and M/N is finitely generated, it follows that
M/N = 0, i.e., M = N .
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